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I. INTRODUCTION

For several years now the US Army and Navy have been working jointly on a
program to develop low vulnerability (LOVA) gun propellants. This effort was
undertaken in response to the need to reduce the catastrophic kill of armored
weapons systems by damage~inflicted initiation of on-board ammunition. The
result has been development of a family of LOVA propellants, generally consis-
ting of a nitramine (RDX or HMX) dispersed in an inert binder matrix. These
formulations are characterized by an impetus level of 970 to 1100 J/g, with
flame temperatures from 2280 to 2800 XK. Ignition temperatures, according to
conductive ignition tests, are in the range of 600 to 1300 K, and burning rate
exponents are typically reported to be just in excess of unity. Documentation
abounds on the LOVA program, and the reader is directed to the references for
a more complete discussion of this major research and development effort and
its accomplishments.l’2

The reduction in vulnerability offered by LOVA propellants can, in
general, be associated with two characteristics of these formulations.
Primarily, a higher threshold for thermal ignition reduces the likelihood of
inadvertent initiation, or at least delays its onset and reduces the rate of
subsequent flamespread. In addition, lower burning rates at low pressures
reduce local pressurization rates, again likely slowing flamespread, perhaps
even eliminating conditions which might otherwise contribute to the transfer
of ignition among stored ammunition components.

Some of these same features, however, may have impact on various aspects
of the interior ballistic cycle beyond that of ignition. For instance, the
reduction in burning rates at low pressures is most often accompanied by some
increase in the sensitivity of burning rate to pressure, manifested in a

burning rate pressure exponent in excess of unity.’ Classical ballistic
considerations suggest that this should result in a small overall increase in
ballistic wvariability, an effect which indeed has been noted during some

LOVA gun firings. Further, it has been noted that, while development efforts
to date have been directed towards tank guns, low-pressure ignition and
combustion characteristics exhibited by LOVA propellants may pose considerable

Is., wiee and J.J. Rocchio, "Binder Requiremente for Low Vulnerability
Propellants," 18th JANNAF Combustion Meeting, CPIA Publication 347, Vol. II,
pp. 3056-320, October 1981,

2R.W. Deas, G.E. Keller, and J.J. Rocchio, "The Interior Ballistic
Performance of Low Vulnerability Ammunition (LOVA)," 1981 JANNAF Propulsion
Meeting, CPIA Publication 340, Vol. III, pp. 437-477, May 1981.

34.c. Haukland and W.M. Burmett, "Semsitivity of Interior Ballistic
Performance to Propellant Thermochemical Parameters,” Proceedings of the Tri-
Service Gun Propellant Symposium, Vol. I, pp. 7.3-1 - 7.3-11, Picatinny
Arsenal, Dover, NJ, October 1972.




difficulties to the designer of zoned, artillery charges.4 In this study,
however, we will limlt ourselves to the influence of these features on multi-
phase flow processes, including ignition and flamespread, in the tank gun
configuration currently of interest.

II. DISCUSSION

A. Background

Let us begin with a brief review of multiphase flow processes typically
occurring 1in conventional, high-performance propelling charges employing
granular propellant. The sequence of events begins with a local ignition
stimulus of hot gases and/or particles, which for tank ammunition employing a
high-pressure bayonet primer, results in ignition of adjacent propellant
grains in just a few milliseconds. Combustion products from the burning
grains join those from the igniter, penetrating the remainder of the propel-
lant bed and leading to convectively driven flame propagation throughout the
entire propellant charge. Concurrently, interphase drag may lead to local bed
compaction, which is similarly transmitted through the propellant aggregate,
and motion, with possible impact of individual grains against the projectile
base or breech face. Stagnation and reflection of the gas pressure wave
associated with the ignition front at these same boundaries increase local
pressures and hence local propellant burning rates. This situation may be
further exacerbated by a reduction in local free volume 1f bed compaction is
present or by additional burning surface if grain fracture has occurred.

Tank ammunition has often been considered relatively d{immune to the
vigorous multiphase flow dynamics described above because of the nearly
uniform, distributed igniter output provided by bayonet primers and immobility
of the propellant bed in a nearly full cartridge case. Recent years, however,
have seen more and more tank ammunition configurations with long projectile
boattails extending deep 1into the propellant bed, preventing use of the
traditional 1long, bayonet primer. Moreover, the tapered portion of the
boattail provides a region of changing cross—-sectional area which could serve
to focus gas pressure waves and perhaps easily distort incoming propellant
grains to the point of fracture.

The study reported herein was motivated by the results from a series of
firings in a 105-mm, M68 Tank Gun performed to evaluate the ballistic perform-
ance of a particular LOVA formulation (CAB/ATEC/RDX, Mix 1453). Substantial
variations in maximum chamber pressure were observed; further, maximum chamber
pressure was seen to 1increase with increasing levels of pressure waves, as
measured in terms of the initial reverse pressure difference between breech
and forward ends of the gun chamber., (See Figure 1 and Appendix A.) This
relationship between pressure waves and maximum chamber pressure is well

4r.0. Minor and A.W. Horst, "Some Experimental Methods for the Study of Two-
Phase Flow in LOVA Artzllery Charges, " Internationale Jahrestagung, ICT,

Karlsruhe, Germany, June 1982.
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documented for artillery charges,5 where variations in igniter stimulus and
propellant/chamber interface are readily avallable to excite strong,
longitudinal pressure waves leading to grain fracture, but a gimilar exhibi-
tion by tank ammunition, supposedly free from such varlables, requires that
comparable yet unknown mechanisms be operative. This work wae thue undertaken
to identify any such mechanisms and to ensure thelr absence in developmental
propelling charges employing candidate LOVA propellents.,

B. Analysis

The analysis was performed using the NOVA code,6 a two-phase, unsteady
flow representation of the interior ballistic cycle. The balance equations
describe the evolution of macroscopic flow properties accompanying changes in
mass, momentum, and energy arising out of iInteractions assoclated with combus-
tion, interphase drag, and heat transfer. Functioning of the igniter is
included by specifying a predetermined mass injection rate as a function of
position and time. Flamespread then follows from axial convection, with grain
surface temperature deduced from a heat transfer correlation and the unsteady
heat conduction equation, and ignition based on a surface temperature criter-
ion. The NOVA code provides a one-dimensional (with area change) representa-
tion of flow, necessitating some compromise in configural aspects of the
problem, as depicted in Figure 2. It was felt, however, that thie limitation
would not seriously degrade the essential feature of the study - assessing the
ballistic influence of propellant characteristics unique to the LOVA family.
If results warranted further attention to the problem, a somewhat _more costly
two-dimensional analysis could be performed using the TDNOVA code.

A baseline NOVA calculation for the 105-mm, M68 Tank Gun firing the M456
Cartridge loaded with 5.76 kg of LOVA propellant (CAB/ATEC/RDX, Mix 1453) was
performed using input data displayed in Table 1. A predicted maximum chamber
pressure of about 450 MPa, obtained with no attempt to manipulate barrel
resistance or burning rate data for refinement of the calculation, falls
comfortably in the range of values shown in Figure l. Further, the predicted
structure of pressure versus time and pressure-difference versus time profiles
1s 1in surprisingly good agreement with experimental data recorded for ome of
the rounds exhibiting a relatively low level of pressure waves. (See Figure 3.)

Calculations were then performed to determine the role played in charac—
terization of the ballistic environment by those particular inputs exhibiting

54.W. Horst, I.W. May, and E.V. Clarke, "The Missing Link Between Pressure
Waves and Breechblows," ARBRI~MR-02849, USA ARRADCOM, Ballistic Research
Laboratory, Aberdeen Proving Ground, MD, July 1978 (AD A058354).

6p.s. Gough, "The NOVA Code: A User's Manual. Volume 1. Deecription and
Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, December 1980.

’P.S. Gough, "4 Two-Dimensional Model of the Interior Ballietics of Bagged

Artillery Charges,” ARBRL-CR-00452, USA ARRADCOM, Ballistic Research
Laboratory, Aberdeen Proving Ground, MD, April 1981 (AD A100751).
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TABLE 1. PROPFELLANT INPUT DATA

PROPELLANT TYPE CAR/ATEC/RDX
MASS OF PROPELLANT (kg) 5.76
DENSITY OF PROPELLANT (g/cm3) 1.58
OUTSIDE DIAMETER (mm) 4.39
PERFORATION DTAMETER (mm) 0.28
LENGTH (mm) 6.50
NUMBER OF PERFORATIONS 7

SPEED OF COMPRESSION WAVE I[N SETTLED BED (m/s) 152,

SPEED OF EXPANSION WAVE (m/s) 1270.
BURNING RATE COEFFIGIENT (cm/s-MPal*t) 0.02573
BURNING RATE EXPONENT 1.05
BURNING RATE ADDITIVE CONSTANT 0.
IGNITION TEMPERATURE (K) 611,
THERMAL CONDUCTIVITY (J/cm-s-K) 0.00222
THERMAL DIFFUSIVITY (em©/s) N.0008677
EMISSIVITY FACTOR 0.6
CHEMICAL ENFRGY RELEASFEN IN BURNING (J/g) 3716.
MOLECULAR WEIGHT (g/gmol) 20.22
RATIO OF SPECIFIC HFATS 1.275
COVOLUME (cm>/g) 1.19

values largely unique to LOVA propellants, Specifically addressed were
burning rates and ignition temperatures, for reasons previously discussed, and
propellant rheology, largely uncharacterized for this family of propellants.
In addition, the influence of igniter profiles reflecting increasing levels of
local base ignition was studied, as was the sensitivity of results to
projectile engraving pressure.

0f immediate notice is the substantial variation in predicted performance
observed to accompany selected modifications to the input data base. Treating
the less intriguing results first, we note in Table 2 a relatively small and
qualitatively reasonable influence of propellant bed rheology as reflected in
the speed of compression waves in the settled bed. The slightly stiffer bed
of the modified data base led to 1less bed compaction at stagnation and a
slight reduction in the 1level of predicted pressure waves. However, the
influence of engraving pressure on maximum chamber pressure and muzzle veloci-
ty was quite large, though there was surprisingly little impact on predicted
pressure-wave level,. Indeed, a somewhat more conscientious study of the
pressure—difference versus time profiles revealed very similar pressure waves
superimposed with little coupling on quite disparate overall chamber-pressure
levels associated with differences in projectile motion. (A complete set of
all pressure-difference profiles calculated using the NOVA code during the
course of this study 1is included as Appendix B.)

A totally unexpected result was the strong influence of ignition tempera-
ture on calculated results shown 1n Table 3. Realizing that the use of a
surface-temperature ignition criterion represents quite a simplification of
nature, particularly in the highly transient gun environment, we wish to de-

I5




TABLE 2. SUMMARY OF CALCULATED RESULTS - BASELINE

STUDY PARAMETER MAX PRESS MUZ VELOCITY DIFF PRESS
(MPa) (m/s) (MPa)
Baseline (Table 1) 447 1211 3
Speed of Compression 441 1207 0
Wave = 254 m/s
Engraving Pressure = 21 372 1154 3
MPa (34 MPa baseline)
Engraving Pressure = 48 498 1241 1
MPa

emphasize the importance of the actual input values employed in the study.
Nevertheless, the fact that the range of ignition temperatures studied exerted
an influence on predicted pressures, velocities, and pressure waves alike
suggests that this aspect of LOVA propellants may be playing a role of ballis-
tic consequence beyond the intended reduction 1in vulnerability. Agaln, the
important parameters here scem to be just how much propellant 1is burning at

what pressures and associated burning rates before the projectile experiences
significant travel.

TABLE 3. SUMMARY OF CALCHULATED RESULTS - IGNITION TEMPERATURE

STUDY PARAMETER MAX PRESS MUZ VELOCITY DIFF PRESS
(MPa) (m/s) (MPa)
Baseline (Table 1) 447 1211 3
Ignition Temp = 444 K 372 ' 1159 18
Ignition Temp = 528 K 386 1170 12
Ignition Temp = 694 K ~~- propellant did not ignite ---

Remainling for the moment with the toplc of ignition, we note in Table 4
that increased levels of localized, base ignition of the propellant charge are
predicted, as expected, to lead to an increase in the magnitude of pressure

TABLE 4. SUMMARY OF CALCULATED RESULTS - IGNITER PROFILE

STUDY PARAMETFER MAX PRESS MUOZ VELOCITY NDIFF PRESS
(MPa) (m/s) (MPa)

Baseline (Table 1) 447 1211 3

Base/Forward Igniter 419 1189 8

Output Ratio = 2
(Baseline = 1)

Base/Forward Igniter 372 1150 9
Output Ratio = 3

16



waves., However, unlike the experimental data of Figure 1, a reduction, rather
than an 1oncrease, 1in maximum chamber pressure is seen to accompany this
trend. We will return to this disconcerting result shortly.

An earlier study 8 documented the predicted influence of burning rate
representation on predicted pressure waves in a Navy 5-Inch/54-Caliber Gun.
When the burning rate exponent is veduced and the coefficlent correspondingly
increased to maintain overall ballistic levels in a particalar gun environ-
ment, low pressure burning rates are seen to increase, most often increasing
pressure-wave levels as well. On the other hand, as seen in the results of
the current study (Table 5), 1increasing the exponent and decreasing the
coefficient In a similar fashion may so reduce low pressure burning rates that
the flame does not propagate if only a small portion of the propellant hed is
ignited directly by the primer. Additional results were obtained here by
simultaneously reducing the ignition temperature to increase the size of this
region igonited by the primer. The strong 1link between burning rate and
pressure waves previously documented was then reproduced, though we must note
that the accompanying tread in maximum chamber pressure is unfortunately more
a result of our scheme for selecting burning rate coefficients than an
expression of the correct physical relationship between maximum pressure and
pressure waves.

TABLE 5. SUMMARY OF CALCULATED RESULTS -~ BURNING RATE EXPONENT

3TUDY PARAMETER MAX PRESS MUZ VELOCITY DIFF PRESS
(MPa) (w/s) ‘ (MPa)

Raseline (Table 1) 447 1211 3

Burning Rate Exponent 442 1203 9
= 1.0

Burning Rate Fxponent 441 caleculation not completed —-
= 1.1

Rurniag Rate Exponent ~-- flame did not propagate -—-—
= 1.2

Burning Rate Exponent 383 1167 23
= 1.0; Ignition Temp
= 444 K

Burning Rate Exponent 359 1148 14
= 1,1; Ignition Temp
= 444 K

Burning Rate Exponent 339 1126 , 9
= 1.2; Ignition Temp
= 444 X

? . . . . .

“4.W. Horst, "Influemce of Burming Rate Representation on Gun Fnvironment
Flamespread and Pressure Wave Predictions,” IHMR 76-255, Naval Ordnance
Station, Indian Head, MD, March 1976.
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We also note that while burning rates were orlginally provided to this
investigator in terms of a single set of values for b and n in the classical
r=bP" representation, actual closed bomb data, shown in Flgure 4, reveal the
presence of several apparent slope bresks., While two of these inflections
occur at low pressures and are posaslibly complicated by flamespreading pheno~
mena, the slope bresk near 100 MPa cannot be so easlly discredited. The
actual burning rate exponent in the highest pressure reglon shown ranges from
1,17 to 1,32, depending on treatment of the tralloff at the top end of the
data. The results of several calculations using these data (Table 6) attest
to the fact that ballistlc performance 1s extremely sensitive to burning rates
and that, at these high exponents, overall system ballistic sensitivity to
other perturbations (e.g., variations in projectile weight, charge weight, or,
as demonstrated here, engraving pressure) may be substantially increased. In
the calculations reported, a change in peak engraving pressure from 21 to 34
MPa yielded increases in maximum chamber pressure of 75 and 201 MPa for the
runs employlng burning rate exponents of 1.05 and 1.17 respectively!

TABLE 6, SUMMARY OF CALCULATED RESULTS - MULTI-SLOPE BURNING RATES

STUDY PARAMETER MAX PRESS MUZ VELOCITY DIFF PRESS
(MPa) (m/s) (MPa)
Baseline (Table 1) 447 1211 3
Multi-Slope; High~ 1234 1393 ' 11
Pressure Exponent =
1.32
Multi-Slope; High- 561 1280 11
Pressure Exponent =
1,17
Multi-Slope; High- 360 1158 6

Pressure Exponent =
1.17; Engraving
Pressure = 2] MPa

Multi-Slope; High- 458 1232 10
Pressure Exponent =
1.17; Engraving
Pressure = 28 MPa

A relevant selection of results from the above calculations 1is depicted
graphically in Figure 5, where predictions of maximum chamber pressure and the
corresponding pressure-wave level are displayed. The predicted trend, if any,
is not very satisfying in 1light of experimental results. Clearly, some
process is occurring in the 105-mm gun that is not being captured in the NOVA
simulations. This result, however, 1s not unprecedented, and indeed has been
discussed in some detall in a previously referenced publication,5 where the
missing link was postulated to be grain fracture. If we explore our calcula-
tions in somewhat more detail, we note that increasing levels of bed compac-

18
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tion and accompanying intergranular stress at the forward edge of the
propellant bed are associated with increases in the magnitude of predicted
pressure waves. These relationships have been included as Figures 6 and 7
and, if realistic, are very likely to result in grain fracture in the gun —-—
even if not in the NOVA code!

In response to this possibility, several special NOVA calculations were
performed to determine the influence of localized grain fracture in this
region of high intergranular stress. To simulate this process, the calcula-
tion was halted at the appropriate time and the forward 10 cm of propellant
were “fractured," as indicated in Figure 8, yielding local increases in
surface area of about 3 1/2 and 6 times that of the unaltered grains. (We
note that the cylindrical "splinters" shown are not necessarily believed to
reflect the actual configuration of shattered grains but are simply employed
to facilitate numerical treatment of the problem.) The calculation was then
resumed with this increased burning surface locally concentrated in the front
of the gun chamber. Ignition temperatures were also manipulated between 444
and 694 K to allow investigation of this event both when the newly fractured
grains had previously been ignited and when flamespread had not quite reached
this portion of the charge. The data shown in Table 7 reflect the results
from this series of NOVA runs, both identifying a mechanism capable of
substantial impact on maximum chamber pressures and confirming the earlier
result that variations in flamespreading properties could be one source of
ballistic irreproducibility with LOVA propellants.

TABLE 7. SUMMARY OF CALCULATED RESULTS — GRAIN FRACTURE

STUDY PARAMETER MAX PRESS MUZ VELOCITY DIFF PRESS
(MPa) (m/s) (MPa)

Baseline (Table 1) 447 1211 3

Baseline with Ignition 372 1159 18

Temperature = 444 K

Fracture Diameter = 397 1178 20
1.8 mm; Ignition
Temperature = 694 K

Fracture Diameter = 397 1180 23
1.8 mm; Ignition
Temperature = 444 K

Fracture Diameter = 483 calculation 19
0.9 mm; Ignition not completed
Temparature = 694 K

Fracture Diameter = 534 1259 41
0.9 mm; Ignition
Temperature = 444 K
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IIT. CONCLUSIONS

While the above analysis involved many simplifications of bhoth physical
and chemical aspects of the propellant system under study, the following
conclusions can be drawn from calculated results:

1. Performance variability experienced during ballistic testing of LOVA
propellant Mix 1453 and very 1likely for any other propellant exhibiting
similar combustion properties may be, in some significant part, a result of
variations in the extent of flamespread at first motion of the projectile.
This result underscores the need for reproducibility of both propellant
ignitability and primer performance.

2. Performance variability for such propellants will also be exacerbated
by an increased system sensitivity associated with high burning rate expo-
nents, Burning rate data over the entire range encountered in the gun are
necessary to assure propellant acceptability and reproducibility; a single bP"
description fit over the entire range will most often not be useful to this
end and perhaps may even be misleading.

3. Neither of the above mechanisms, however, is sufficient to explain
the apparent relationship between maximum chamber pressure and pressure
waves. While they may be responsible for a variation in the magnitude of the
pressure waves themselves, propellant grain fracture, caused by the accompany-
ing high levels of intergranular stress, is once again implicated as the
likely link bhetween 1ncreases in pressure waves and lncreases in maximum
chambher pressure,
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APPENDIX B

NOVA SIMULATIONS OF PRESSURE DIFFERENCE VERSUS TIME
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